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ABSTRACT ' 
$ 

I 

e 

An analysis i s  made f o r  laminar forced convection heat t r ans fe r  i n  a c i r cu la r  

tube o r  a p a r a l l e l  p l a t e  channel whose walls may undergo a rb i t r a ry  time variations 

i n  temperature. 

steady state s i tua t ion  with heat  t r ans fe r  taking place,  or the f l u i d  and w a l l s  can 

be i n i t i a l l y  at the same uniform temperature. 

d 
I 

The t i m e  varying process can begin from an already established 

T J  
The f l u i d  veloci ty  d i s t r ibu t ion  i s  

f u l l y  developed and unchanging with time. 

w a l l  temperature i s  s p a t i a l l y  uniform, t h a t  i s  all portions of the w a l l  simultaneously 

undergo the  same temperature-time var ia t ion.  The grea te r  p a r t  of the analysis i s  con- 

cerned w i t h  the  response t o  a . s t ep  change i n  w a l l  temperature, and the  time required 

A t  any in s t an t  during the  t rans ien t  the  

.4. 

t o  reach steady state i s  given f o r  t h i s  , type of t rans ien t .  

e r a l i zed  t o  apply for a rb i t r a ry  variations with time. 

Then the  results are  gen- 
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l o c a l  heat  addition per  unit area a t  channel w a l l  

dimensionless radial coordinate, r/ro 

r a d i a l  coordinate measured from c i rcu lar  tube center l ine;  ro, tube radius ’ 
R 

r - 
Reynolds number; f o r  a c i rcu lar  tube, - u4a f o r  a p a r a l l e l  p l a t e  channel 

U 
Re 

T dimensionless temperature, ( t  - to)/(tw - to) 

temperature; to, temperature of f l u i d  entering channel ( a  constant);  tw, 

w a l l  temperature 

t 
rl 
d rn 

I 

t ’  temperature difference,  - to 

f l u i d  velocity i n  the  x-direction; u, mean f l u i d  velocity; urnax, m a x i m u m  
- 

f l u i d  velocity i n  the channel cross sect ion 

U 

dimensionless ax ia l  coordinate - x’ro f o r  a c i r cu la r  tube, - 3 ./. R e P r  f o r  a ’ RePr X 

paraJ.le1 p l a t e  channel 

a x i a l  distance from entrance Of channel X 

dimensionless coordinate, y/a Y 

normal coordinate measured from center l ine of p a r a l l e l  p l a t e  channel Y 

thermal d i f fus iv i ty ,  k/pcp 

steady-state eigenvalues f o r  c i rcu lar  tube 

exponent id  constants i n  t rans ien t  solut ion f o r  c i r cu la r  tube, Eq. (17) 

dimensionless time; - 8u ev f o r  c i rcu lar  tube, 7 
rEPr a Pr  

f o r  p a r a l l e l  p l a t e  channel 

U 

2 
’n 

e 

@* 
t i m e  

dummy integrat ion variable 

A2 n steady-state eigenvalues f o r  pa ra l l e l  p l a t e  channel 

ab so lu te  v i s  cos f t y  P 

kinematic v i s  cos i t y  V 

f l u i d  density P 

exponential constants i n  solution f o r  p a r a l l e l  p l a t e  channel, Eq. (36a) 

exponent id  constants i n  solution f o r  p a r a l l e l  p l a t e  channel, Eq. (36b) 

‘n 

’n 
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eigenfunctions f o r  solut ion i n  c i rcu lar  tube on 

X function of X i n  steady-state solution f o r  c i r cu la r  tube, Eq. (5) 

Subs c r i p  t s : 

S r e fe r s  t o  steady-state condition 

INTRODUCTION 

The behavior of heat  t r ans fe r  equipment during t rans ien t  temperature 

i n  recent years, received grea te r  a t tent ion especial ly  i n  connection with 

changes has, 

the use of 

nuclear reactors  as power sources. Since nuclear propert ies  are of ten temperature 

dependent,it is  sometimes necessary t o  consider i n  d e t a i l  

within the  system,to be assured tha t  proper control w i l l  be maintained during power 

changes. 

associated with a thermal t rans ien t  i n  a forced convection channel flow. 

the  thermal t rans ien ts  

The present paper i s  concerned with studying the heat transfer behavior 

Two geometries which are comonly encountered i n  pract ice  are selected f o r  anal- 

The f low i n  the  tube o r  be- y s i s ,  t he  c i r cu la r  tube, and the pa ra l l e l  p l a t e  channel. 

tween the  p a r a l l e l  p la tes  i s  assumed t o  be laminar, incompressible, and f u l l y  deve- 

loped. 

which allows the  flow t o  es tab l i sh  a fu l ly  developed veloci ty  d i s t r ibu t ion  before 

reaching the  heated sect ion of the  channel. The t rans ien t  heating process is  such 

t h a t  t he  w a l l  temperature can be specified t o  have an a rb i t ra ry  time variat ion.  

I n i t i a l l y  t h e  system can be e i the r  at steady state with heat t r ans fe r  taking place, 

or the  whole system can be i n i t i a l l y  isothermal with the f l u i d  and bounding w a l l s  all 

a t  the  same temperature. 

i s ,  all posi t ions along the w a l l  simultaneously undergo the  same temperature-time 
9 

var ia t ion .  

The l a s t  assumption implies tha t  a hydrodynamic entrance length i s  present 

A t  any instant  of time the  w a l l  temperature i s  uniform, t h a t  

Most previous analyses of t rans ien t  forced convection heat t r ans fe r  i n  passages 

have been t r ea t ed  by one-dimensional approximations, t h a t  i s ,  veloci ty  and temperature 

For the  p a r a l l e l  p l a t e  channel both w a l l s  are at the  same temperature. * 
* 
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variat ions over t he  channel cross sect ion have been neglected. A good review of work 

using t h i s  approach can be found f o r  example, i n  references (1) and ( 2 ) .  The present 

work employs a two-dimensional analysis and thus includes the  var ia t ions i n  veloci ty  

and temperature over the  cross sections of the  flow channels. 

The t rans ien t  heat t r ans fe r  s i tua t ion  considered here has been t r ea t ed  by another 

method i n  references (3) and (4).  

t rance region is  examined and the  r e su l t s  do not extend far down the passage. 

present method yields  r e su l t s  f o r  the en t i re  length of t he  channel, but  i n  the  se r i e s  

expansion method which is  employed, many terms are required t o  calculate  r e su l t s  f o r  

the  region very close t o  the  tube entry.  

of references (3) and (4), information i s  obtained f o r  all posi t ions i n  the  flow 

passage. 

However, i n  these references only the  thermal en- 

: The 
Y 

Thus, by joining the  present r e su l t s  t o  those 

Two methods f o r  performing the  analysis are given here; one method is  used i n  t h e  

calculat ions f o r  the  c i r cu la r  tube while t he  other i s  used f o r  t he  p a r a l l e l  p l a t e  con- 

f igurat ion.  

ce r t a in  required functions are computed. 

volves t h e  numerical integrat ion of an ordinary d i f f e r e n t i a l  equation, while f o r  the  

p a r a l l e l  p l a t e  channel the  functions are obtained by a series expansion i n  terms of 

more simple functions. 

ou t l ined  i n  reference (5).  

governing p a r t i a l  d i f f e r e n t i a l  equation, but involves an approximation at one s t ep  

i n  t h e  analysis.  

a c t  results available f o r  p a r t  of t he  solution and good agreement i s  obtained. 

a r b i t r a r y  t i m e  var ia t ions i n  w a l l  temperature, r e su l t s  are  obtained by general- 

i z ing  the t rans ien t  corresponding t o  a unit s tep  change i n  w a l l  temperature. 

A s  w i l l  be shown i n  the  analysis these two methods d i f f e r  i n  the way 

For t he  c i r cu la r  tube t h e  computation in- 

A method somewhat similar t o  t h e  second approach has been b r i e f l y  

The method given here is  not an exact solut ion of t he  

The v a l i d i t y  of t h i s  approximation is t e s t ed  by comparison with ex- 

For 

The analysis thus proceeds i n  the following order. The c i r cu la r  tube i s  anal- 

yzed f o r  a s t e p  i n  w a l l  temperature, and the  r e su l t s  are then generalized f o r  a rb i t r a ry  
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, b e  var ia t -ms .  Then t h e  p a r a l l e l  p la te  configuration is  t r ea t ed  by a s l i g h t l y  d i f -  

f e r en t  method. Results of t rans ien t  heat flux variat ions and times required t o  reach 

steady s t a t e  are  given graphically and compared with previous work. 

STEP-CHANGE I N  W A L L  TEsIpERATIIRE FOR FLOW I N  A CIRCIILAR TUBE 

This port ion of the analysis i s  concerned with f u l l y  developed laminar flow 

through a c i r cu la r  tube as shown i n  Fig. 1. 

i t i a l l y  isothermal at temperature to. 

The tube and f l u i d  are  assumed t o  be in-  

Then the  w a l l  i s  given an instantaneous s t e p  7 
Eil i n  temperature t o  a new value $ and maintained at  f o r  all time thereaf ter .  

The energy equation f o r  incompressible flow i n  a tube can be wr i t ten  as 

a t  a t  l a  ae+'?G=".;:-ar (-2) 
To obtain the  equation i n  t h i s  form viscous diss ipat ion and ax ia l  heat conduction are 

neglected compared w i t h  heat  conduction i n  the r a d i a l  direct ion.  It i s  convenient t o  

rewri te  t h i s  equation i n  terms of dimensionless variables defined as, 

0 ,  X, and R are respectively t h e  dimensionless time, distance along the tube, and 

r a d i a l  distance,  and are the  three  independent variables o f  the  problem. The dimen- 

s ion less  temperature T 

value of T i s  zero while a t  the  tube w a l l  T becomes unity. Since the  flow i s  

i s  defined so  that at the  entrance t o  the  heated sect ion the  

f u l l y  developed the  veloci ty  dis t r ibut ion has the parabolic form, 
r 1 

Subst i tut ing these quant i t ies  into Eq. (1) results i n  the following dimensionless 

equation, 

This m u s t  be solved subject t o  the following boundary conditions: 
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T = O  a t  X = O  f o r a l l  R a n d @ ,  entrance condition 

T = 0 at  @ = 0, f o r  all R and X, i n i t i a l  condition 

& x = O  at R = O ,  

J T = 1 at R = 1 f o r  all X and f o r  0 ’ 0 ,  specif ied wall 
t empe rat  me 

To obtain a solut ion w e  first consider the r e su l t s  f o r  t he  steady-state heat  t r ans fe r  

=J condition. 

w 
M 
I 

Steady-state solution. - A t  steady state there  are of  course no var ia t ions with 

t i m e  and hence Eq. (3) reduces t o  

The steady state solut ion corresponding t o  the boundary conditions (3a) i s  f o r  the  

s i t u a t i o n  of f l u i d  at  uniform temperature entering a pipe maintained a t  a d i f f e ren t  

constant w e l l  temperature. This problem w a s  t rea ted  by Graetz i n  1885 (see r e f .  (6), 

p. 451), and f o r  convenience w i l l  be b r i e f l y  reviewed here as the r e s u l t s  w i l l  be needed 

l a t e r  i n  the  analysis.  

A product solut ion i s  employed of the form 

When t h i s  i s  inser ted  in to  Eq. (4)  it is  found t h a t  

x = e  -P% 

where -p2 i s  the  separation constant a r i s ing  i n  the  product solut ion.  The equation 

f o r  the  function cp i s  

d2P 1 dq 2 2 - + --  + ( P P  (1 - R ) = 0 
m2 R dR 

with t h e  boundary conditions 

( P = O  at R = l  1 

(7) 

Equations (7)  and (7a) form an eigenvalue problem of t h e  Sturm-Liouville type. Solu- 

t i ons  a re  possible on ly  for a discrete ,  though i n f i n i t e ,  set of p values. Hence, 
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the  solut ion f o r  T s  can be wr i t ten  as 

2 
-PnX Q) 

Ts = 1 - Cn(Pn(R)e 
Il=O 

2 
where pn 
and (7a ) .  

and q+-, are  the  eigenvdues and corresponding eigenfunctions of Eqs. ( 7 )  

The coef f ic ien ts  Cn are  evaluated from the boundary condition t h a t  Ts = 0 
rl 

? w at the  tube entrance (X = 0) .  

Cn m u s t  s a t i s fy ,  

Applying t h i s  condition t o  Eq. (8),  we find t h a t  the  

From the propert ies  of the  Sturm-Liouville system it follows immediately t h a t  

(R - R3)(Pn dR 

The first f ive eigenvalues of Eq. ( 7 )  and values of 

accuracy i n  reference (7 )  and asymptotic r e su l t s  f o r  higher values of pn and Cn 

are  given i n  reference (8).  

C, are available t o  very good 

2 

This completes the steady-state solution and we now tu rn  t o  the  t rans ien t  

problem. 

Transient solution. - To form a transi-ent solution, we try a series expansion 

about t h e  steady s t a t e  condition. With t h i s  type of formulation the  t rans ien t  solu- 

t i o n  w i l l  automatically converge, at large times, t o  exactly the  steady-state r e su l t .  

Thus we try a t rans ien t  solut ion of t h e  same general form as the  steady state equa- 

t i o n  (8), 

n=O 
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For large times the  function Fn should, by comparison with Eq. (8), converge t o  

2 
-PnX 

Fn = e 

The approximation which i s  now made is  t h a t  the  t rans ien t  solut ion is only re- 

quired t o  s a t i s f y  an integrated form of the energy equation, and w i l l  only exactly 

s a t i s f y  the  equation i n  d i f f e ren t i a l  form f o r  the  l i m i t  of very large time. M u l t i -  

rl plying Eq. (3) by R and integrat ing from 0 t o  1 gives the integrated form, 

The trial solution, Eq. (9) , i s  then subst i tuted in to  Eq. (11) with t h e  r e s u l t  t h a t  

each Fn must s a t i s f y  the  r e l a t ion  

This type of p a r t i a l  d i f f e ren t i a l  equation can be t r ea t ed  by using the method of char- 

a c t e r i s t i c s .  

auxi l ia ry  ordinary d i f f e ren t i a l  equations (see r e f .  (9)  , p. 368) , 
I n  t h i s  method the solution i s  obtained by considering the'following 

Equating the second and t h i r d  terms yields a solut ion f o r  Fn as, 

To simplify t h i s  the steady state Eq.  ( 7 )  i s  multiplied by R and integrated from 

R = 0 t o  R = 1, with the  r e s u l t  
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3 
M 
I w 

Comparing t h i s  with the exponent i n  Eq. (14a) w e  f i nd  t h a t  

-P3 
Fn = e 

which i s  the  desired form f o r  steady-state as given by Eq. (10). I n  a similar 

fashion the f i r s t  and t h i r d  terms of  Eq. (13) are equated which gives the  solut ion 

Thus we have obtained two re su l t s ,  one being the  steady-state solut ion,  Eq. (14b), 

and the  other ,  Eq. (15)) a solut ion which i s  dependent on time only. The l a t t e r  w i l l  

be ca l l ed  the  i n i t i a l  t rans ien t  solution. The method of charac te r i s t ics  indicates  

t h a t  these two r e s u l t s  can be joined along a charac te r i s t ic  l i n e  which passes through 

t h e  o r ig in  of the X-0 plane. This l i n e  is obtained by integrat ing the  equation formed 

by the  first and second terms of Eq. (13) subject t o  the condition t h a t  X = 0 when 

0 = 0. This y ie lds  

(R - R3)Qn dR 

where t h e  r a t i o  of the  two in tegra ls  has been denoted by an. Using an abbreviated 

notat ion f o r  t he  constants involved i n  the exponentials w e  have f o r  F, 

-Yn@ 
F n = e  , 

2 I 
where = Pn/yn. To obtain the  f i n a l  form of  the solution, Fn i s  subs t i tu ted  

i n t o  Eq. (9) t o  give 
QD 

e , O < % X  

, o m q  

T = 1 - Cn'P,(R) 

-0 e 
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Now it i s  

A t  X = 0, f o r  

we have (since 

This condition 

;;1 f o r  any f i n i t e  
rl 

I 
127 

0 = 0) 

which i s  again 

necessary t o  consider the boundary conditions as given by Eq. (3a). 

any f i n i t e  Q, t h e  condition 0 > %X i n  Eq. (18) is  f u l f i l l e d ,  and 

T = O  at X = O )  

0 = 1 -x cnqn 
n=O 

has already been s a t i s f i e d  according t o  Eq. (sa). For 0 = 0, w e  have 

X the  condition 0 < %X and Eq. (18) gives (s ince T = 0 at  

m 

0 = 1 - c CnVn 
n=O 

t h e  same condition t h a t  has already been s a t i s f i e d  by proper evaluation 

of the Cn. The f irst  two boundary conditions of Eqs. (3a) are thus s a t i s f i e d  by 

using the  same Cn obtained i n  the  steady-state solution. The last two boundary 

conditions a re  ident ica l ly  satisfied as they were used i n  determining the 

Hence t h e  solut ion s a t i s f i e s  a l l  of t he  required boundary conditions, converges ex- 

a c t l y  t o  the  steady-state condition for l a rge  t i m e s ,  and i s  approximate t o  the extent 

t h a t  it s a t i s f i e s  an integrated form of the energy equation. The accuracy of t h i s  

approximation w i l l  be discussed a l i t t l e  l a t e r .  

9,. 

Numerical solution. - I n  order t o  compute heat- t ransfer  quant i t ies  from the  t e m -  

perature  d i s t r ibu t ion  of Eq. (18) it is necessary t o  know values of 

and an. 
l i terature,  but the  values of qn  

so t h a t  t h e  integrat ions necessary t o  determine y, could be performed. To obtain 

the  desired numerical information, Eq. (7)  and the  required in tegra ls  were programmed 

for numerical computation on an IBM 653 electronic  d i g i t a l  computer. A forward in te -  

gra t ion  scheme (Runge-Kutta) was employed, and quant i t ies  were evaluated f o r  the  f i rs t  

seven eigenvalues. 

funct ion at the  w a l l  which w i l l  be needed for the  calculations i n  the  next section. 

2 
Cn, (Pn, rnJ Pn, 

A s  mentioned before, some of these quant i t ies  are  already available i n  the  

were generally not tabulated i n  suf f ic ien t  d e t a i l  

These are l i s t e d  in  Table I along with the der ivat ive of  the  eigen- 
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Space l imi ta t ions  preclude a presentation of the  9, 

as IBM l i s t i n g s .  

values but they are  avai lable  

W a l l  heat  flux. - It i s  recal led t h a t  t he  t rans ien t  heating process which yields  

t h e  temperature d i s t r ibu t ion  of Eq. (18) is  one i n  which the  w a l l  is given a s t ep  

function change i n  temperature from an i n i t i a l l y  isothermal condition with both the  

w a l l  and f l u i d  at  the same temperature. It is  of i n t e r e s t  t o  look at the  w a l l  heat  

f l ux  var ia t ion which i s  required during the t r ans i en t  t o  maintain the  w a l l  temperature 

constant. This heat  f l ux  can be evaluated from Fourier’s  l a w  

where q i s  defined as the heat added at the  w a l l .  Applying t h i s  t o  Eq. (18) gives 

the  r e s u l t  f o r  the  w a l l  heat  

k ( t w  - to) 

f lux  as a function of posi t ion along the  tube and time 

Before examining t h i s  expression i n  de t a i l ,  the  port ion of it which forms t h e  i n i t i a l  

t r ans i en t  so lu t ion  w i l l  be considered as it w i l l  indicate,  t o  some extent,  the accuracy 

of t he  in t eg ra l  approximation used i n  the analysis.  

To b e t t e r  understand the  i n i t i a l  t rans ien t  process, consider the  f l u i d  which i s  

at  the entrance of the heated sect ion a t  the  time t h a t  t he  s t ep  i n  w a l l  temperature 

occurs. After a period of time has elapsed, t h i s  f l u i d  w i l l  have t raveled a ce r t a in  

distance down the  tube. 

t h e  heating process of f l u i d  which w a s  o r ig ina l ly  outside the  tube, and hence t h e  heat  

flow process i n  t h i s  region has not been affected by the  f a c t  t h a t  t he  tube has an 

entrance. The behavior i n  t h i s  region is then t h a t  of a tube of i n f i n i t e  length i n  

both direct ions,  and f o r  the  case of uniform w a l l  temperature there  a re  no var ia t ions 

of heat  t r ans fe r  quant i t ies  with distance X. With no X var ia t ion  the  convective 

term i n  the  energy equation (1) is  ident ica l ly  zero and a pure t rans ien t  heat  

Beyond t h i s  distance there  has not been any penetration during 
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conduction process takes place. The heat f l ux  va r i a t ion  during t h i s  i n i t i a l  t rans ien t  

-I-,@ 
e 

i s  obtained from Eq. (20 )  by considering the terms which vary with time only, t h a t  i s ,  

we observe the  heat t r ans fe r  process at su f f i c i en t ly  la rge  X so  t h a t  0 w i l l  al- 

ways be l e s s  than %X. The i n i t i a l  t rans ien t  solut ion is  then 

rl 
rl 

El 
This expression provides the opportunity f o r  evaluating, t o  some extent,  the  accuracy 

of the  present method, since a d i r ec t  comparison can be made with a known heat con- 

duction t r ans i en t .  The exact solut ion for the  i n i t i a l  t rans ien t  i s  t h a t  resu l t ing  

from suddenly changing the surface temperature of  an  i n f i n i t e l y  long s o l i d  cylinder. 

The surface heat  f lux  var ia t ion  f o r  t h i s  case i s  ( r e f .  (6), p. 262) 

W 2 
-En@ 

k ( t w  qrO - to) = 2Ce 

n=O 

where cn are the zeros of the  Bessel function Jo. Eq. (21) has been evaluated f o r  

a seven term approximation, and i s  compared with Eq. (22) on Fig.  2. The agreement 

i s  generally qui te  good, so t h e  present solut ion not only gives good results near 

steady s t a t e  as it i s  constrained t o  do, but i s  a l so  wel l  behaved i n  the i n i t i a l  

t r ans i en t  region. 

Returning now t o  Eq. ( 2 0 ) ,  it i s  noted t h a t  the  n ' t h  term i s  a negative expo- 

nen t i a l  i n  time u n t i l  @ becomes equal t o  k X .  For l a rge r  @ values the  term is  

a constant which depends only on the value of X being considered. Thus, f o r  t he  

seven term approximation which has been car r ied  out here, a graphical p lo t  of t h e  w a l l  

hea t  flux is  found as the  sum of seven d i f f e ren t  curves each of which i s  a negative 

exponential up t o  a ce r t a in  break point and then becomes a constant. This i s  shown 

schematically on Fig. 3 which i l l u s t r a t e s ,  i n  graphical form, the way i n  which the  

t r a n s i e n t  hea t  f lux i s  determined at a given locat ion along the tube. Eq. (20 )  has 

been evaluated f o r  several  d i f f e ren t  values of X and r e s u l t s  a re  shown on Fig. 4. 
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The f igure i l l u s t r a t e s  the t r ans i en t  process f o r  several  axial locations i n  the 

heated sect ion.  

Steady s t a t e  times. - A quantity of p rac t i ca l  importance i s  the time required 

f o r  the w a l l  heat t r ans fe r  t o  reach the steady s t a t e  value a f t e r  a s t ep  i n  w a l l  tem- 

perature  i s  made. Since steady s t a t e  i s  approached gradually, the steady s t a t e  

time, Os,  must be chosen somewhat a rb i t r a r i l y .  

quired f o r  the heat f l ux  t o  approach within f i v e  percent of the value reached f o r  

i n f i n i t e  time. Figure 5 presents 0, as a function of X.  Also shown a re  the steady 

s t a t e  times of Ref. (3)  which were obtained by an approximate method applicable i n  

the  region of s m a l l  

It i s  defined here as the time re- 

i 
7 

X, and which jo in  the present curve f a i r l y  well. 

Two l imi t ing  l i n e s  are  drawn on Fig. 5. The l i n e  f a l l i n g  below the present re-  

sults i s  a lower bound on the steady s t a t e  time which is  found by saying t h a t  the 

hea t  t r a n s f e r  process cannot be s tab i l ized  at  a ce r t a in  locat ion u n t i l  a time of at 

l e a s t  x / s m  has elapsed. The re la t ion  Os = x/umaX i s  equivalent, i n  the dimen- 

s ion less  system of var iables ,  t o  

flow solut ion (Ref. (10)) which gives a steady s t a t e  time of 

This l i n e  shows t h a t  the slug flow solution y ie lds  steady s t a t e  times which are  too 

low for  s m a l l  values of X and too high f o r  l a rge  X. Physically t h i s  is  due t o  the  

f a c t  t h a t  f o r  s m a l l  X the thermd. boundary layers  a re  th in ,  and the  establishment 

of steady s t a t e  i n  t h i s  region depends on the convection process near t he  w a l l .  Since 

the ve loc i t i e s  near the w a l l  are small, it takes longer f o r  the  f l u i d  t o  move from the  

tube entry t o  a given loca t ion  than i s  indicated by the  slug flow approximation. 

i n  t h i s  region the  slug flow solut ion underestimates the  s teady-state  time. 

X the  establishment of steady s t a t e  is evidently more depenaent on the  ve loc i t i e s  

f u r t h e r  away from the w a l l .  

has been able t o  penetrate  a l l  the way across the  tube and the f l u i d  temperature near 

t h e  w a l l  has already been brought close t o  the w a l l  temperature. 

i n  the  cen t r a l  port ion of the tube cross sec t ion  are  higher than the slug flow veloci ty ,  

t he  steady s t a t e  times a re  lower than slug flow predicts .  

0, = X. The upper l i n e  i s  obtained from the slug 

8, = x p ,  o r  0, = 2 X .  

Hence 

For large 

This i s  because during the  i n i t i a l  t r ans i en t  period, heat 

Since the ve loc i t i e s  
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ARBI?IRARY TIME DEPENDENT W A I L  TENPEMTUFU3 FOR FLOW I N  A CIRCULAR TUBE 

Fluid and w a l l  both i n i t i a l l y  a t  temperature to. - I n  the  previous sect ion re- 

sults were obtained which described t h e  t rans ien t  behavior following a s t e p  change 

i n  w a l l  temperature. A s  shown i n  Fig. 6 an arb i t ra ry  w a l l  temperature var ia t ion  can 

be visual ized as a se r i e s  of d i f f e ren t i a l  s teps ,  and due t o  t h e  l i n e a r i t y  of the  

energy equation the  e f fec ts  of these steps can be added t o  determine t h e  response f o r  

3 
W 

an a rb i t r a ry  var ia t ion.  Since the  w a l l  temperature var ia t ion  i s  specif ied,  it is  the  

w a l l  heat  f l u x  response which m u s t  be determined. 
r 

F i r s t  consider a process i n  which the system i s  i n i t i a l l y  isothermal, and t h e  

w a l l  i s  then given a s tep  i n  temperature dtw at  t i m e  @*. From Eq. (20) the response 

-yn(Q-O") t o  t h i s  d i f f e r e n t i a l  s t ep  i s  
a 

where t '  = - to. This response i s  then integrated over t he  a rb i t r a ry  w a l l  t e m -  
perature  var ia t ion  t o  obtain the variation i n  q. For a general discussion of t h i s  

type of superposition procedure, t he  reader i s  referred t o  R e f .  (ll), page 403. 
in tegra t ion  of Eq. (23)  can be put i n  the form, 

The 

where for a given 0,  the  value of N i s  found from the r e l a t ion  

( 2 4 4  
-1 

n=O 

< 0 i "Nx 
and f o r  N = 0 we define the  first sunmation as 0, and a l so  l e t  a-l 0. 

To use t h i s  r e l a t ion  w e  can think i n  terms of evaluating the  heat  f l ux  as a function 

of t i m e  at a pa r t i cu la r  X,  say X = Xi. For ear ly  times, 0 w i l l  be l e s s  than a l l  

of t h e  anXi and we use only the second summation from n = 0 t o  n = Q). A s  we go 

t o  l a t e r  times more and more terms are evaluated from the  f irst  summation. Since the 
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problem, as given here, has only been evaluated f o r  seven terms, when the  time is  

su f f i c i en t ly  large so tha t  0 > a6Xi only the f i rs t  summation is  used. 

I n i t i a l  steady state heat transfer with tw # to. - Here we are concerned with 

computing the  heat t r ans fe r  behavior when the  t rans ien t  begins from an i n i t i a l  steady- 

s t a t e  heat-transfer s i tua t ion .  This can be done by u t i l i z i n g  the  r e su l t s  of t he  pre- 

vious sec t ion  i n  the  proper way. 

tw = to 

ature  t o  go through any convenient t rans ien t  (e.g. ,  a s tep  function) which w i l l  bring 

I n  the previous sec t ion  the t rans ien t  began with 

Then w e  allow the  w a l l  temper- =I to 
I w 

and we now begin again with t h i s  condition. 

it t o  k, and it is  kept a t  $ u n t i l  steady steady-state i s  reached. Then the  spe- 

c i f i e d  t rans ien t  is  i n i t i a t e d  and the resu l t s  for t h i s  pa r t  of t he  computation y ie lds  

the  desired response from an i n i t i a l  steady-state heat t ransfer  condition. 

STEP C"GE I N  WALL TEMPERATlTRE FOR FLOW I N  A PARALzlEL PLATE CHANIQZ 

The t rans ien t  problem w i l l  now be discussed f o r  fully-developed laminar flow be- 

We consider t h e  same s t ep  func- tween p a r a l l e l  f l a t  p la tes  as i l l u s t r a t e d  i n  Fig. 7. 

t i o n  t r ans i en t  which w a s  discussed f o r  the c i rcu lar  tube, that is ,  the system i s  in- 

i t i d l y  isothermal a t  temperature 

changed t o  tw. 

tube case.  

w a l l  temperature which y ie lds  an expression of t he  same form as Eq. (24). 

s i m i l a r i t y  only the  results f o r  a s tep  change w i l l  be given here. 

to and the  w a l l  temperature is  then suddenly 

The f i n a l  results a re  i n  the same form as those f o r  the  c i r cu la r  

Hence they can be generalized t o  include a rb i t r a ry  time var ia t ions  i n  

Due t o  t h i s  

The energy equation analogous t o  Eq. (1) is 

a t  a t  a% 
3 z + u ; 5 ; ; = a a y z  

This is  rewri t ten i n  dimensionless form by defining the  following variables,  

t - to 

a' t w  - t o  
y = 2. T =  ev x = -  8 ./.. 

3- RePr' 
0 =-• 

a'pr ' - 
where Re = u4a/u. Inser t ing  the  fu l ly  developed veloci ty  d is t r ibu t ion ,  
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i n to  Eq. (25) yields  the  d i f f e ren t i a l  equation 

which must be solved subject t o  the  same boundary conditions as given by Eqs. (3a) 

with the  coordinate Y replacing R .  

Steady-state solut ion.  - To obtain the  t rans ien t  solut ion we first consider the  

s t e ady-s t at e equation, 
aTs a2Ts 

(1 - Y2) ax = - 
aY2 

For the  c i r c u l a r  tube the  eigenfunctions, cp(R), of Eq. (7)  were determined by numer- 

i c a l  integrat ion of the governing d i f f e ren t i a l  equation. For the p a r a l l e l  p l a t e  

channel mother  approach w i l l  be i l l u s t r a t e d  which provides an a l te rna te  method of 

a t tack.  To begin t h i s  method we look a t  t he  slug flow problem corresponding t o  the  

s i t ua t ion  described by Eq. (28) .  For slug flow the velocity d is t r ibu t ion ,  1 - Y 2 , 
i s  replaced by a constant value. 

t h i s  case are  i n  the  form of cosines, cos w, where the  m are integers  from 

zero t o  i n f i n i t y .  It is  then proposed t o  bring i n  the Y dependence of t he  veloci ty  

d i s t r ibu t ion  by expanding the  eigenfunctions i n  the  solut ion of Eq. (28)  i n  terms of 

t he  eigenfunctions of the  slug f l o w  problem. Thus, a solut ion t o  Eq. (28)  is  t r ied 

Reference (10) shows t h a t  t he  eigenfunctions f o r  

i n  the form 

rtY 3 r tY  5rrY 
2 2 2 cos - + bnl cos - + bn2 cos - + . . .] 

n=O 

o r  

bm cos 
(a+ 1 ) r r Y  

2 1 
For purposes of i l l u s t r a t ion ,  the procedure w i l l  be discussed here f o r  a f i v e  term 

approximation, t h a t  is  the m and n indices w i l l  vary from 0 t o  4. 
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If Eq. (29) i s  subst i tuted in to  Eq. (28) there  i s  obtained after rearrangement 

3fl + . . . + bn4 cos 2 
(1 - Y2)[bno cos - 'Icy + bnl cos - 

2 2 

2 
- [(&--r bnO cos 2 + (kr bnl cos 2 + . . . + ($-) bn4 COS 2 

Equation (30) is  then multiplied by cos - " and integrated over Y from zero t o  

4 one. This r e s u l t s  i n  the  first of the  f ive simultaneous equations shown below. Then 

'31' w Eq. (30) i s  multiplied by cos 2 

2 

;;1 
and integrated t o  y i e ld  the  second equation, and I 

t h i s  process i s  repeated f o r  each of t he  cosine harmonics. This yields  the following 

s e t  of f i ve  simultaneous equations f o r  the f ive  term approximation being considered 

Since these equations are  homogeneous, the 

of t h e i r  coef f ic ien ts  i s  zero, and hence the  

b, can only be nont r iv ia l  i f  the matrix 

2 
Xn are  t h e  roots of the  coef f ic ien t  

matrix. 

computer using a double precis ion routine which car r ied  1 6  s ign i f i can t  f igures .  

2 An accuracy of about 1 2  f igures  i n  the  & values w a s  found necessary t o  obtain 

2 good values of the b,. The An are  l i s t e d  i n  Table I1 and the  f i r s t  four  show 

good agreement with those evaluated by other  methods i n  R e f s .  (8) and ( 1 2 ) .  The 

poor agreement of i s  due t o  the  f ac t  t ha t  only a f i v e  term approximation i s  

being used here. 

The 1: were found by solving the  matrix on an IBM 653 electronic  d i g i t a l  

2 
X4 
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2 

An With the  known, the s e t  of homogeneous Eqs.  (31) cannot be solved t o  y i e ld  

b,, but w i l l  only y i e ld  four coeff ic ients  i n  each equation i n  terms of t h e  

Thus, i f  each equation i n  the set 

a l l  the  

f i f t h  coef f ic ien t  which remains yet  undetermined. 

i s  divided by i t s  bnO the  r a t i o s  bd/bno, bn2/bn0, e tc . ,  can be determined by 

solving any four of the  resu l t ing  f i v e  simultaneous equations. The so lu t ion  as 

given by Eq. (29) i s  now i n  the form 
4 4 

bm 
bnO 2 + c - cos TS 

lIG1 n=O w 

where the  bm/bno are known. 

To determine the bnO we 

This yields  

n=O 

apply the boundary condition t h a t  IPS = 0 at X = 0. 

1 

M and in-  
2 Equation (32) i s  now mult ipl ied separately by each of the  

tegra ted  over Y from zem t o  one. This yields ,  f o r  the  f i v e  term approximation, 

cos 

f i v e  simultaneous equations fo r  the unknown bnO, 
4 

n=O 

When the 

so lu t ion  t o  the  steady-state problem. 

bnO have been determined from t h i s  s e t ,  Eq. (29a) provides the  complete 

The numerical values of the constants are 

given i n  Table 11. 

Transient solut ion.  - The steady-state solut ion as given by Eq. (29a) i s  seen t o  

be of t h e  same form as t h a t  obtained f o r  the  round pipe, Eq. (8)) except t h a t  t he  

eigenfunctions a re  given i n  t e r n  of cosine s e r i e s  expansions r a the r  than by cpn(r) 

which a re  obtained by numerical integrat ion of an ordinary d i f f e r e n t i a l  equation. 



V 

. 1. 

- 19 - 
Since t h e  two results are of t h e  same basic form,the solut ion of t he  t rans ien t  equa- 

t i o n  follows as before and w i l l  only be given i n  b r i e f  ou t l ine  here. 

The energy Eq. (27)  i s  integrated t o  yield,  

1 
(1 - Y2)T dY = "1 bo a J lTdY+&[  0 ?E y=l 

A t rans ien t  solut ion i s  then assumed i n  the  form rl 

d I 
w ( 2 m  + 1)nY 1 4 4 

T = 1 - bnoGn(X,O) 2 
I-GO 

(34) 

(35) 

and t h i s  i s  inser ted  in to  Eq. (34).  

y ie lds  the  following p a r t i a l  d i f f e ren t i a l  equation f o r  a f i v e  term approximation, 

After the  integrat ions a re  Carrie, out t h i s  

+ - - _ - -  1 1 bn2 1 bn3 

bnO bnO 

This i s  of t he  same form as Eq. (12) and hence the  so lu t ion  can immediately be 

wr i t t en  by analogy with the  previous solut ion Eq. (la), 

where 
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and 

1 

(. + 2 ( 2 m  + 

(. + f: E l  (2m + 113 

II 4 IWl 
Tn - - - 32 

1 

l-i 7 Numerical values of un, T ~ ,  and fn  are given i n  Table I1 f o r  a f i v e  term approx- 
w 

imation. Table I11 gives values f o r  a three term approximation which, when compared 

with Table 11, indicates how the  solut ion converges with increasing numbers of terms 

i n  the  approximation. 

Wall heat  flux. - By using Fourier 's  l a w  the  heat t ransfer red  a t  the  channel 

walls i s  obtained as 

I n  the  i n i t i a l  t rans ien t  period t h i s  reduces t o  t h e  purely time dependent equation, 

r 1 

"his can be compared with the  pure conduction solut ion resu l t ing  from suddenly changing 

t h e  temperature a t  the surfaces of a slab of f i n i t e  thickness and i n f i n i t e  extent (see 

r e f .  ( 6 ) ,  p. 262) 

U n=O 

Curves calculated from Eqs . (38) and (39) are included on Fig. 8, and good agreement 

i s  obtained. 
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Figures 8 and 9 show the transient heat flux and steady state times as a func- 

t i o n  of loca t ion  dong the  channel. These r e s u l t s  were obtained from Eq. (37) i n  

the  same way t h a t  the  computations were made f o r  t he  c i r c u l a r  tube case. The lower 

l imi t ing  curve on Fig. 9 is  obtained by l e t t i n g  the  steady-state time be 

which is equivalent t o  0, = X, while fo r  the  slug flow assumption 

o s  = 'z  X. 

a lso shown and joins  f a i r l y  well  onto the present r e su l t s .  

x/sa 
X 

U 
Os = Y o r  

The curve of steady s t a t e  time f o r  s m a l l  X, as given i n  Ref .  (4), i s  

1 
& 
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1 

2 

3 

4 

5 

6 

TABLE I. - COEFFICIENTS FOR FLOW IN CIRCULAR TUBE 

44.6095 

113.921 

215.241 

348.564 

513.78 

711.11 

I 0 )  7.31358 I 5.1540 

16.262 

29.918 

45.392 

62.327 

80.324 

99.592 

Cn 

1.4764 

- 80612 

.5887 6 

-. 47585 

.40502 

-. 35542 

.31892 

dQn/m (R=l 

-1.0143 

1.3492 

-1.5723 

1.7460 

-1.8909 

2.0145 

-2.1265 

an 
1. a 9 0  

2.7432 

3.8078 

4.7418 

5.5925 

6.3963 

7.1403 
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2.30858 

11.9441 

24.9156 

37.4291 

92.5592 

n 

1 

2 

3 

4 

5 

- 

- 

2.82948 

32.3656 

95.2824 

178.074 

608.811 

TABLE 11. 

bnO 

1.17776 

.0579815 

.0165696 

.00706883 

,0138607 

- COEFTICIENTS IN FIVE TERM APPROXIMATION FOR 

FLOW BETWEEN PARALz;EL PLATES 

0.0211834 

-5.37195 

-4.00649 

-3.59673 

-3.32432 

1 4 

2.82776 

32.1475 

93.4792 

187.388 1 1 414.761 

-0.0011389 6 

- -838971 

9.45808 

bn3/bn0 

0.000207037 

.0230766 

3.31526 

7.94700 

6.61879 

b n d b n o  
______ 
-0.0000586707 

-.00930795 

. lo1483 

-7.12402 

13.7624 

fn  

1.22564 

2.70975 

3.82421 

4.75764 

6.57754 



- 25 - 

1.18025 

.0589906 

TABU 111. - COEFFICIENTS IN THREE TERM APPROXIMATION 

0.0211847 

-5.37097 

A 
M 
I w 

2.82777 

32.1508 

104.683 :: 2.31337 2.83546 1.22568 

12.1389 32.9332 2.71304 

34.7142 144.296 4.15668 

- 
n 

1 

2 

3 

__ 

- 

FOR F'LOW BETWEEN PAFiALUL PLATES 

.0339989 I -3.89954 

-0.00114101 

-. 842957 

8.99210 
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2.0 1: PRESENT ANALYSIS 
CONDUCTION SOLUTION ---- 

Fig. 2. - Comparison of Inltia: transiect results in round tube with conduction transient 
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Fig. 3. - Schematic representatlon of wall heat flux computation f o l -  

lowing a step change in wall temperature. 



Fig. 4 .  - T r a n s i e n t  v a r i a t i o n  in w a l l  h e a t  f l u x  fo l lowing  a s t e p  change i n  wall t empera tu re  f o r  f low 
i n  a c i r c u l a r  t u b e .  
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Fig. 8. - Transient variation in wall heat flux following a Step change in wall temperature for flow 
between parallel flat plates. 
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Fig.  9 .  - Time t o  reach steady s t a t e  a f t e r  a s t e p  change i n  wal l  temperature for 
flow between p a r a l l e l  f l a t  p l a t e s .  
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